Search results for " anode"

showing 10 items of 37 documents

Structural, catalytic and electrical investigation on La1-xSrxCr1-yFeyO3- δ as anodes for IT-SOFCs

2012

IT-SOFC Anode Rietveld analysis CH4-TPR DC conductivity
researchProduct

Elettrodeposizione di leghe nanostrutturate a base di stagno

2010

Settore ING-IND/23 - Chimica Fisica Applicatatin tin alloy nanostructures anode lithium ion battery template electrosynthesis
researchProduct

Calcium phosphate/polyvinyl acetate coatings on SS304 via galvanic co-deposition for orthopedic implant applications

2021

Abstract In this work, the galvanic deposition method is used to deposit coatings of brushite/hydroxyapatite/polyvinyl acetate on 304 stainless steel. Coatings are obtained at different temperatures and with different sacrificial anodes, consisting of a mixture of brushite and hydroxyapatite. Samples are aged in a simulated body fluid (SBF), where a complete conversion of brushite into hydroxyapatite with a simultaneous change in morphology and wettability occurred. The corrosion tests show that, compared with bare 304, the coating shifts Ecorr to anodic values and reduces icorr Ecorr, and icorr has different values at different aging times due to chemical interactions at the solid/liquid i…

Materials scienceGalvanic anodeCytotoxicitySimulated body fluidPolyvinyl acetate02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesHydroxyapatiteCorrosionchemistry.chemical_compoundCoatingMaterials ChemistryGalvanic cellBrushiteOrthopedic implantsSettore ING-IND/24 - Principi Di Ingegneria ChimicaPolyvinyl acetateSettore ING-IND/34 - Bioingegneria IndustrialeSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsAnodeCorrosionGalvanic depositionSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringchemistryengineering0210 nano-technologySurface and Coatings Technology
researchProduct

NANOSTRUCTURED ANODE MATERIAL FOR Li-ION BATTERY OBTAINED BY GALVANIC PROCESS

2016

The accumulation of energy by batteries plays a fundamental role for the production of electrical energy and for its efficient management. Between different storage systems the lithium-ion battery are considered very interesting. Although they are now a well-established commercial reality, they are still subject of vigorous research efforts, in order to make improvements primarily in terms of costs, safety and energy density. The latter is in fact still low compared to that of fossil fuels, if you think to the automotive field. In particular efforts are focused towards the identification of valid alternatives to the electrode materials so as to overcome the limitations and extend the use of…

Settore ING-IND/23 - Chimica Fisica ApplicataNANOSTRUCTURES ANODE MATERIAL Li-ION BATTERY GALVANIC PROCESS
researchProduct

The influence of aluminium cations on electrocarboxylation processes in undivided cells with Al sacrificial anodes

2005

Abstract The influence of Al cations on the electrochemical carboxylation of acenaphthylene ( 1 ), benzophenone ( 2 ), 6-methoxy-2-acetonaphthone ( 3 ), and benzyl chloride ( 4 ) has been investigated in dimethylformamide at a glassy carbon cathode. The Al 3+ ions were either added at the beginning of the experiment or were released from the anode during electrocarboxylation. It has been found that when Al cations are added to the reaction medium, they strongly influence the reduction process, in most cases leading to a complete change of the mechanism. For example, in the case of 1 , the radical anion ( 1 − ) formed upon 1e − reduction rapidly reacts with Al 3+ to give an Al(III) adduct, w…

Reaction rate constantCarboxylationChemistryGalvanic anodeGeneral Chemical EngineeringInorganic chemistryElectrochemistryDisproportionationReaction intermediateGlassy carbonElectrochemistryAnalytical ChemistryAnode
researchProduct

Oxidation of carboxylic acids in water at IrO2-Ta2O5 and Boron Doped Diamond anodes

2011

Abstract A detailed study was dedicated to the anodic oxidation of three carboxylic acids (namely, oxalic, formic and maleic acid) with the objective to evaluate in a systematic way the effect on the oxidation of carboxylic acids of numerous relevant parameters, including the nature and the concentration of the carboxylic acid, the alimentation regime (potentiostatic vs. amperostatic), the current density and the working potential values, the flowdynamic regime, the temperature and the nature of the electrode material. It was observed that the effect of some operative parameters strongly depends on the nature of the electrode and of the carboxylic acid. As an example, the efficacy of abatem…

Maleic acidGeneral Chemical EngineeringCarboxylic acidInorganic chemistrychemistry.chemical_elementengineering.materialRedoxCarboxylic acidDSAIndustrial and Manufacturing Engineeringchemistry.chemical_compoundEnvironmental ChemistryIridiumAOPchemistry.chemical_classificationElectrochemical incinerationDiamondGeneral ChemistryIridium anodeAnodechemistryElectrodeengineeringOxidation of organics.Current densityBDD
researchProduct

SnCo nanowire array as negative electrode for lithium-ion batteries

2011

Abstract Amorphous SnCo alloy nanowires (NWs) grown inside the channels of polycarbonate membranes by potentiostatic codeposition of the two metals (SnCo- PM ) were tested vs. Li by repeated galvanostatic cycles in ethylene carbonate-dimethylcarbonate – LiPF 6 for use as negative electrode in lithium ion batteries. These SnCo electrodes delivered an almost constant capacity value, near to the theoretical for an atomic ratio Li/Sn of 4.4 over more than 35 lithiation–delithiation cycles at 1 C. SEM images of fresh and cycled electrodes showed that nanowires remain partially intact after repeated lithiation–delithiation cycles; indeed, several wires expanded and became porous. Results of amorp…

Materials scienceTIN-COBALT ALLOYRenewable Energy Sustainability and the EnvironmentMetallurgyNanowireEnergy Engineering and Power Technologychemistry.chemical_elementTin Tin–cobalt alloy Nanowire Anode Lithium-ion batteryLithium batteryLithium-ion batteryAmorphous solidAnodeSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringchemistryTINElectrodeLithiumElectrical and Electronic EngineeringPhysical and Theoretical ChemistryTinANODELITHIUM ION BATTERY.NANOWIRE
researchProduct

Chitosan-Coating Deposition via Galvanic Coupling

2019

A galvanic method to deposit chitosan coatings on stainless steel substrate is reported. Deposition of suitable coatings is desired to improve biocompatibility and corrosion resistance of metallic medical devices to be implanted in human body. In the present work, a thin hydrogel layer of chitosan was deposited on 304SS by a galvanic displacement reaction, which is advantageous first as it does not require external power supply. 304SS was immersed into an aqueous solution of chitosan/lactic acid and electrochemically coupled with magnesium acting as a sacrificial anode. SEM images showed the formation of a uniform layer of chitosan with a thickness controlled by deposition time. Corrosion t…

Materials scienceBiocompatibilityGalvanic anodegalvanic deposition0206 medical engineeringBiomedical Engineeringmacromolecular substances02 engineering and technologyengineering.materialCorrosionBiomaterialsChitosanchemistry.chemical_compoundCoatingGalvanic cellSettore ING-IND/24 - Principi Di Ingegneria ChimicaAqueous solutiontechnology industry and agriculturemedical devices biomaterialbiocoatingSettore ING-IND/34 - Bioingegneria Industriale021001 nanoscience & nanotechnology020601 biomedical engineering304SS stainless steelBiomaterialSettore ING-IND/23 - Chimica Fisica ApplicatachemistryChemical engineeringengineeringcytotoxicitychitosan0210 nano-technologyLayer (electronics)
researchProduct

Toward Tin-Based High-Capacity Anode for Lithium-Ion Battery

2014

Electrochemical deposition of SnCo alloys inside the nanometric pores of commercial membranes is described. Composition, morphology and crystallographic structure of the synthesized nanostructured alloys are reported as well as the results of electrochemical tests carried out both in half-cell and in full battery configuration to investigate the performance of these SnCo alloys as anodes for lithium-ion batteries. Optimized depositions yielded nanostructured alloys that performed 200 deep galvanostatic cycles at C/2 and 30 °C with 80 % capacity retention and coulombic efficiency higher than 97 % after 40 cycles Moreover, charge-discharge rate capability tests showed the high performance of …

Battery (electricity)SnCo alloyMaterials sciencechemistry.chemical_elementHigh capacitylithium-ion batteryTin-based anodeLithium-ion batteryAnodeSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringchemistryTin Tin-cobalt alloy Nanowires Anode Li-ion batteriesTinECS Transactions
researchProduct

Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: A simple theoretical model including direct and indirect oxidatio…

2009

Abstract The electrochemical oxidation of organics in water at metal oxide electrodes was investigated with the aim to discuss the correlations between the instantaneous current efficiency ICE and operative conditions by considering both the hypothesis of a direct oxidation process and of an indirect process mediated by adsorbed hydroxyl radicals or chemisorbed “oxygen”, in order to explicit the main differences expected between these cases. Thus, a simple theoretical model was discussed, as an extension of previous studies of Comnnellis and co-workers which were focused on indirect oxidation paths [C. Comninellis, Electrochim. Acta 39 (1994) 1857; O. Simond, V. Schaller, Ch. Comninellis, E…

ElectrolysisAqueous solutionChemistryGeneral Chemical EngineeringInorganic chemistryOxygen evolutionOxideElectrochemical incinerationSettore ING-IND/27 - Chimica Industriale E TecnologicaElectrochemistryRedoxDSAlaw.inventionMetalchemistry.chemical_compoundlawvisual_artElectrodeElectrochemistryvisual_art.visual_art_mediumTheoretical modelAnodic organics oxidationOxygen evolutionMetal oxide anode
researchProduct